Math 103 Day 3: More Limits

Ryan Blair

University of Pennsylvania
Thursday September 16, 2010

Outline

(1) Limits

Outline

(1) Limits

Infinite Limits

Definition

Let f be a function defined on both sides of a, except possibly at a itself, then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

if $f(x)$ can be made arbitrarily large by taking x sufficiently close to a, but not equal to a

Infinite Limits

Definition

Let f be a function defined on both sides of a, except possibly at a itself, then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

if $f(x)$ can be made arbitrarily large by taking x sufficiently close to a, but not equal to a

Definition

Let f be a function defined on both sides of a, except possibly at a itself, then

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

if $f(x)$ can be made arbitrarily large and negative by taking x sufficiently close to a, but not equal to a

Vertical Asymptotes

Definition

The line $x=a$ is called a vertical asymptote of $y=f(x)$ if one of the following holds:
(1) $\lim _{x \rightarrow a^{-}}=\infty$
(2) $\lim _{x \rightarrow a^{-}}=-\infty$
(3) $\lim _{x \rightarrow a^{+}}=\infty$
(3) $\lim _{x \rightarrow a^{+}}=-\infty$

Limit Laws I

(1) $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
(2) $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
(3) $\lim _{x \rightarrow a}[c f(x)]=c\left[\lim _{x \rightarrow a} f(x)\right]$
(3) $\lim _{x \rightarrow a}[f(x) g(x)]=\left[\lim _{x \rightarrow a} f(x)\right]\left[\lim _{x \rightarrow a} g(x)\right]$
(3) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$

Limit Laws II

(1) $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$
(2) $\lim _{x \rightarrow a} c=c$
(3) $\lim _{x \rightarrow a} x=a$
(9) $\lim _{x \rightarrow a} x^{\frac{1}{n}}=a^{\frac{1}{n}}$
(3) $\lim _{x \rightarrow a}[f(x)]^{\frac{1}{n}}=\left[\lim _{x \rightarrow a} f(x)\right]^{\frac{1}{n}}$
(3) $\lim _{x \rightarrow a} \sin (f(x))=\sin \left(\lim _{x \rightarrow a} f(x)\right)$
(1) $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
(2) $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
(3) $\lim _{x \rightarrow a}[c f(x)]=c\left[\lim _{x \rightarrow a} f(x)\right]$
(1) $\lim _{x \rightarrow a}[f(x) g(x)]=\left[\lim _{x \rightarrow a} f(x)\right]\left[\lim _{x \rightarrow a} g(x)\right]$
(5) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$
(c) $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$
(1) $\lim _{x \rightarrow a} c=c$
(3) $\lim _{x \rightarrow a} x=a$
(2) $\lim _{x \rightarrow a} x^{\frac{1}{n}}=a^{\frac{1}{n}}$
(0) $\lim _{x \rightarrow a}[f(x)]^{\frac{1}{n}}=\left[\lim _{x \rightarrow a} f(x)\right]^{\frac{1}{n}}$
(1) $\lim _{x \rightarrow a} \sin (f(x))=\sin \left(\lim _{x \rightarrow a} f(x)\right)$

Theorem

If f is a polynomial (or rational function) and a is in the domain of f, then

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Theorem

If $f(x) \leq g(x)$ when x is near a and the limits of f and g both exist as x approaches a, then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Theorem
If $f(x) \leq g(x) \leq h(x)$ when x is near a and

$$
\begin{gathered}
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L \\
\text { then } \lim _{x \rightarrow a} g(x)=L
\end{gathered}
$$

